

Junwen Luo

No. 135 Xingang West Road, Guangzhou 510275, China

luojw63@mail2.sysu.edu.cn | [Google Scholar](#) | [Personal Website](#)

EDUCATION

Sun Yat-sen University

Master of Science in Physics

Guangzhou, China

Sep 2022 – Jun 2025

Beijing University of Chemical Technology

Bachelor of Engineering in Electronic Science and Technology

Beijing, China

Sep 2018 – Jun 2022

RESEARCH INTEREST

Quantum Optics, Open Systems, Superradiant Phase Transitions, Waveguide QED, Quantum Information.

RESEARCH EXPERIENCE

Quantum Phase Transitions in Light-Matter Interaction Systems

Sep 2023 – Jan 2025

Supervisor: Prof. Ze-Liang Xiang, Sun Yat-sen University

- Investigated superradiant phase transitions in a Dicke trimer model with both photon and atom hoppings
- Employed the mean-field method to identify the critical points from excitation spectrum, and determined the system's ground-state configuration analytically by using the Cauchy-Schwarz inequality and monotonic method
- Derived an exotic phase diagram and analyzed unique phenomena arising from the interplay between hoppings, including a sequence of transitions across three distinct phases.

High-fidelity Quantum Gates Based on Hybrid Systems

Sep 2021 – Mar 2023

Supervisor: Prof. Guanyu Wang, Beijing University of Chemical Technology

- Developed a method for constructing high-fidelity quantum logic gates in photon-Quantum Dot hybrid systems
- Proposed two detail schemes for implementing both Toffoli and Fredkin gates using photon scattering
- Designed compact quantum circuits with no auxiliary qubits, enhancing experimental feasibility for practical quantum computing tasks.

PUBLICATIONS

Jun-Wen Luo, Bo Wang and Ze-Liang Xiang[†], *Quantum phase transitions in a Dicke trimer with both photon and atom hoppings*, [arXiv:2502.10839](https://arxiv.org/abs/2502.10839) (2025).

Jun-Wen Luo and Guan-Yu Wang[†], *High-fidelity universal quantum gates for hybrid systems via the practical photon scattering*, [Chinese Physics B](https://doi.org/10.1088/1674-1050/32/3/030303), 32(3), 030303 (2023)..

HONORS

First Class Scholarship for Postgraduate Students

Sun Yat-sen University

2023

Second Class Scholarship for Postgraduate Students

Sun Yat-sen University

2022, 2024

LANGUAGE AND SKILLS

Programming Languages: Mathematica, Matlab, Python

IELTS: 6.5

Other: L^AT_EX